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It is well known that, even in the simplest cases, the study of the sta- 
bility of the laninar flow of an incompressible viscous liquid entails 
great mathematical difficulties. However, there is one particular case 
of hydrodynamic equations in which, under somewhat idealized conditions 
for the flow of Liquid, such a study may be carried out to the end with- 
out great difficulty. 

1. Let us examine a system of equations for the plane movement of an 
incompressible viscous liquid in a plane xy 

$+ 
8P u,u+u,v=--+FP,+vAu 

g-t vp + vyv = - ~+F,+W (1.1) 
u,+vv=o 

Here, u and u are the velocity projections on the x- and y-axes; the 
density is everywhere considered as equal to one; it is assumed that an 
external force F per unit mass is acting on the liquid, its components 
along the X- and y-axes being, respectively 

PI = y sin y, Fa = 0 (7 > 0) 

The idealization of conditions will consist in that. instead of the 
no-slip boundary conditions which are usually studied, re will be 
examining solutions of system (1.1) in a class of functions with a 
period of 2n along y. The system (1.1) has the stationary solution 

7 u =-;-siny, v = 0, p = const (1.2) 
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The velocity curve given by this solution contains an inflerion point. 
It is therefore natural to expect that at high Reynolds’ numbers this 
flow will be unstable. The task of examining the stability of the laminar 
solution (1.2) of system (1.1) was placed before us by A.N. Kolmogorov 
at a seminar conducted by him [ 1 1. 

We study the stability of solution (1.2) by the method of small dis- 
turbances. The assumption 

L 

s * (2, Y) dy = @ 

which assures the absence of any systematic displacement, permits us to 
introduce a stresm function which will be periodic along y. 

The stream function of infinitely small disturbances #= (p(x, y, t) 
satisfies the equation (see, for example, 12 I, Sections 1,2) 

&A,++ siw $ (Q + AQ) = VA~Q (i-3) 

d is a Lapface operator. The periodicity of 9 along y permits us to 
use Fourier series. Let us seek a solution q5 of the form 

Q (5, y, t) = 8’ fj c,,ef(ax+*~) 

--cy) 

We then obtain from (1.3), for *coefficients c,,, the system of eqaa- 
tions 

(1.41 , . 

$ (a2 + a*) [v (a* + n*) + a] cn + c~_~ [a* - 1 + (n - I)*] - on+1 [a* - 1 + (n + i)‘]= 0 

In this paper we examine the sign of the real part of those values of 
o- for which there is a nontrivial solution of system (1.4) which tends 
toward zero when 1 n 1 + 00. From these further results we nay draw the 
following conclusions. 

1) When a > 1, the real part of o is always negative; i.e. the solu- 
tion (1.2) is stable. 

2) The values of u which have a non-negative real part must be real. 
This also confirms the usually proposed principle of stability change 
(see, for example, [ 2 I, Section 2,1, p. 27). 

3) It is evident from the graph of the neutral curve that when the 
Reynolds’ number increases, instabiIits sets in at small values of a. 

2. Let us derive the equations for 0. We introduce the following 
notat ion: 
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2v (a* + n2) [v (a* + n*) + G] 
a, = a, (v, a) =I -y- 

a (aa - 1 + 9) 
d,, = d, (v, ci) = c, (a2 - 1 + ne) 

System (1.4) may now be rewritten 

a&, + d,++ - d,+l = 0 (2.1) 

Let ns 8ssume that system (2.1) has a solution ( d,j which satisfies 

the requirements we h8Ve set. It is essily seen that in this case dk 

cannot become zero for any value of k. Indeed, if dk = 0 and k > 0, then 

dk’ f 0 when k’.= k; otherwise the solution would be trivial. Con- 

sequently, having set pi = di/di_ 1, where i > k + 1, we obtain from 

(2.1) 

a, + -ii. = pn.+.i npn n>k+l 
Pn 

The solution of system (2.2) may be written in the form 

pn = a,_, + -.!- 
a n__2 + 1 -* 

(2.2) 

i-1 
*k+a +_-!__ 

ak+l +-w_.!._ 
pk-f-1 

Let us 8ssume thst u is real and positive. Under these conditions, 

a,,> 0 when n> 0 andp,> an_l+m, which is impossible. If u is com- 

plex, then we may consider system (2.1) separately for the real and 

imaginary parts of the coefficients a,. The same considerations applied 

to the real part of an lead to the required result. The case dk = 0, 
where k < 0, laag be considered analogously. 

Thus, for arbitrary values of n we may set up 

P* = Pn (v, a) = - d n-1 

The following assertion 

p1=- 

d 

(n > Oh p; = p; (v, G) = 9 (n <O) (2.3) 
?I 

will be basic for the forthcoming. If 

1 

-G-+ 1 - 
as+ 1 

-g+ *a. 
+ 1 - 

a, I.. + (2.4) 

then pa + 0, when n -, =. If equality (2.4) is not satisfied, then 
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In actual fact, it follows from (2.2) that when Re u > 0, if Re p,>O, 
then Re p,+ i is SlSO 2 0 (When k > 0). or Re p,+ k > Re o, -+ -(n + m), 
which is impossible. 

It is thus absolutely necessary that Re p, be negative at any given 
value of n. For any stipulated u, a number k will be found such that 
Re an will be greater than 1 for n > k, since Re an + 00, where n + -. 
For n > k, condition Re p,+ I < 0, together with Equation (2.2), means 
that pn must be placed on a complex plane, within the circle of radius 

l/Re an, tangent to the imaginary axis and lying in the left semiplane. 
Repeated use of Equation (2.2) shows that pa_ I must be located within a 
certain circle, lying in the left semiplane and having a radius smaller 
than l/Re a,, etc. As a result, pk also must lie in a certain circle in 
the left semiplane, having a radius smaller than l/Re a,. The inter- 
section of circles constructed for pk at different values of n cannot 
ioclnde more than one point, since the radii of these ciroles tend toward 

zero when n -P m. It is easily seen that the value pk, determined by the 

formula 
1 

ok=-- 

belongs to all these circles 
value for pk. Employing once 
Formula (2.4). The assertion 
process. 

and, consequently, is the only possible 
again Equation (2.2), we easily obtain 
stated above is also proved by the same 

Applying the same considerations to negative 

mine that the only 

fd 
I 

reasonable for the 
by the formula 

values of n, we deter- 

value of p - 1 which is 
above problem is obtained 

From Equations (2.1) it follows, when 

or, by virtue of (2.4) and (2.5) 

P-6) 
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From this we concIude that in order for system (2.1) to have a soln- 
tion which tends toward zero when 1 n 1 + 00, it is necessary, and also 
sufficient, that u satisfy Equation (2.6). 

3. An analysis of Equation (2.6) enables us to make immediately cer- 
tain conclusions about stability. 

The following fact pertains: if a > 1, Equation (2.6) will have no 
solutions o for which Re u > 0. 

Indeed, if a > 1. Re( - a&?) < 0. On the other hand, the expression 

f$, k @t a) = -!- 
a1 + f 

Z+ . ..+ i 
- 

'k 

at any value of k and with Re a > 0 has a positive real part, and con- 
eeuaently under these conditions the equality (2.6) is impossible. 

Refinement of this reasoning shows that when a < 1 Equation (2.6) has 
only real solutions when I&e o > 0. In actual fact, let us assume for de- 
finiteness that Ia u > 0. Then arg a, > arg an+ 1, where R > 0, in which 
case the equality is possible only when arg u = 0. However, with any 
value of k 

arg PI, k < arg *l? if argp,,e<n 

2n - arg pl, k d arg ~1, if argp,, ,>a 

The assertion expressed above is thereby proved. 

If y and v are changed in such a way that their relationship reaains 
constant, the profile of the laminar flow will be unchanged. The figure 
depicts the approximate variation of the neutral curve for the case 

avly = 1. The construction of the graph is based on equalities 

which demonstrate that the graph differs from the true variation of a 
neutral curve when a < l/ 4 2 by no more than 0.09 along R. It is not 
difficult to show that when a + 1 - 0, the neutral curve tends asymptotlc- 

ally torard a straight line a = 1. From inequalities (3.1) we may also 
conclude that at small values of u and rather large values of R, there 

exist positive solutions of Equation (2.6) ; i.e. solution (1.2) is un- 

stable. 

The authors wish to thank A.N. KolmOgOrOV for his presentation of the 
problem and his valuable comments on the results. 
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